AP contributed to study design and coordination, helped to draft

AP contributed to study design and coordination, helped to draft CFTRinh-172 mouse the manuscript and critically revised its final version. All authors read and approved the final manuscript.”
“Background

Hfq is a ubiquitous and abundant BEZ235 purchase bacterial protein which assembles into ~12 kDa ring-shaped homohexamers that resemble those formed by the Sm proteins of the eukaryotic splicing complex [1, 2]. It was originally identified in the model bacterium Escherichia coli as a host factor essential for Qβ RNA bacteriophage replication [3]. In uninfected bacteria Hfq retains the ability to bind many mRNAs and trans-acting antisense small non-coding regulatory RNAs (sRNAs), thereby influencing, directly or indirectly, on the stability and/or translation of functionally diverse RNA molecules [4–6]. This variety of interactions place Hfq at a crucial node in bacterial post-transcriptional regulatory networks underlying a wide range of cellular processes and pathways [6–8]. Consequently, mutations in the hfq gene were early

observed to have a severe impact on bacterial physiology resulting in alterations in growth rate, cell morphology and tolerance to harsh environments [9]. In several enterobacteria and other facultative intracellular mammal pathogens these deficiencies ultimately compromise virulence traits such as motility, host invasion or growth/survival in the intracellular niche [10–16]. The virulence-related phenotypes of the hfq mutants have www.selleckchem.com/products/Cyt387.html been shown to be largely dependent on the deregulation of the membrane homeostasis and RpoS- or RpoE-mediated stress response pathways, which have been reported to involve the activity of sRNAs in Thiamet G some of these pathogenic bacteria [15, 17–19]. The α subdivision of the proteobacteria includes diverse species which share the capacity to establish a variety of long-term interactions with higher eukaryotes [20]. The pleiotropic phenotype conferred by hfq mutations is also common to all α-proteobacteria representatives in which the Hfq function has been genetically addressed. For example, in Brucella

spp. the Hfq defective mutants showed osmosensitivity, reduction in the fitness of long-term cultures and impaired survival into host macrophages, further supporting the relevant role of this protein in the establishment and maintenance of chronic intracellular infections [21, 22]. Besides its general contribution to stress adaptation Hfq has been also shown to influence the nitrogen fixation process in free-living (Rhodobacter capsulatus) and symbiotic (Azorhizobium caulinodans and Rhizobium leguminosarum bv. viciae) α-proteobacterial diazotrophs [23–26]. In these microorganisms Hfq acts as a positive post-transcriptional regulator of nifA, the gene encoding the major transcriptional activator of the genes coding for the nitrogenase complex. However, in contrast to the situation in A.

Leave a Reply

Your email address will not be published. Required fields are marked *

*

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <strike> <strong>