9A). Consistent with this, Rb2 and Rd significantly reversed EtOH-mediated Sirt1 and PPARα suppression (Fig. 9B). The results suggest that RGE and its major ginsenosides inhibit alcohol-induced fatty liver and liver injury through the recovery of homeostatic lipid metabolism in the liver. ALD, which ranges from simple fatty liver to cirrhosis and hepatocellular carcinoma, remains a major cause of liver-associated mortality worldwide [29]. Early research on the pathogenesis of the
ALD primarily focused on alcohol metabolism-related oxidative stress, malnutrition, and activation of Kupffer cells by endotoxins [30] and [31]. Recently, the characterization of intra- and intercellular signaling pathways, innate and adaptive immune responses, epigenetic features, microRNAs, and stem cells has improved our knowledge of the pathobiology of ALD [31]. Forskolin mw Despite improved understanding of the pathophysiology of ALD, there is no Food and Drug Administration-approved drug for the specific treatment of ALD. Therefore, the development of effective therapeutic strategies for ALD is ATM/ATR assay pivotal. KRG has been shown to exhibit several beneficial effects in the treatment of liver diseases through the regulation of immune function and antioxidant activity [16]. However, the effects of KRG on alcohol-induced hepatic steatosis and oxidative stress have not been fully established. Here, we established
the effects of RGE on alcohol-induced liver injury in vivo and in vitro and identified the major component of KRG with beneficial effects in ALD. Ginseng saponins, referred to as ginsenosides, play a major
role in most pharmacological actions of ginseng; however, until now, the role of ginsenosides on EtOH-induced fat accumulation has remained observed. Interestingly, the ginsenosides Rb2 and Rd, but not Rb1, significantly restored EtOH-induced Sirt1 and Glycogen branching enzyme PPARα suppression ( Fig. 9B), consistent with RGE treatment to the mice. Moreover, the ginsenosides Rb2 and Rd inhibited EtOH-induced fat accumulation in AML12 cells ( Fig. 9A). The increased lipolytic gene expression and inhibition of fat accumulation resulting from treating by RGE and its major ginsenosides indicates that RGE may be a promising hepatoprotective candidate against liver injury. During the last 5 decades, several animal models of ALD have been studied, which has helped us understand the molecular basis of ALD. The most widely used model for ALD is the Lieber–DeCarli EtOH-containing diet, which is a liquid diet-based voluntary feeding model. Recently, we have developed and reported a more severe alcohol-induced liver injury model (a chronic–binge EtOH model in mice), which is similar to drinking patterns in ALD patients who have a background of long-term drinking (chronic) and a history of recent heavy alcohol use (binge) [25] and [26].