According to the Alka-Plex™ product labels, as well as literature made available by the manufacturer, Alka-Plex™-based products contain a considerable amount of calcium carbonate, potassium hydroxide, magnesium hydroxide, and potassium chloride. Since all of these compounds will freely disassociate in a water solution, there will be an unusually high concentration of the same minerals already present in AK’s glacier water (calcium, potassium, magnesium), as well as the alkaline half of learn more these compounds (e.g., hydroxide
ion, or OH-, from potassium hydroxide). Though the exact amounts of these Alka-Plex™-based compounds within the Alka-PlexLiquid™ formula are not known, these compounds are likely the driving force behind the observations in the present study. It is possible, for example, that the continual presence of a dietary alkalizing agent absorbed directly into the blood could eventually
shift blood pH upward while having the greatest impact on urinary pH for those consuming Selleck SP600125 relatively acidic diets. In fact, urinary pH was influenced the most for those in the Experimental group with the highest PRAL values (Table 9). It is also possible that the influx of additional minerals PX-478 price absorbed into the blood from the AK water contributed to a greater retention of water within the cardiovascular system. This hypothesis could explain why urine output for the Experimental group increased during the post-treatment period following the shift from consuming AK water to the placebo water. Clearly, to understand the cause behind the observations from the present study, more work on tracking concentration changes of these key
minerals in both the blood and urine should occur. Study Implications The results from this study suggest that the regular consumption of mineral-rich bottled water with the Alka-PlexLiquid™ supplement can have measureable cAMP influences on markers for acid-base balance and hydration status when consumed under free-living conditions. Since most studies evaluating nutritional influences on acid-base status are either large-scale epidemiological studies [11], or studies where dietary or supplement intake is tightly controlled [10], the present study is relatively unique. The self-regulation of water consumption by subjects in the present study, however, also make it somewhat more difficult to definitively state how much AK water should be consumed to realize similar observations. Regardless, the present study results suggest that the influence of drinking AK water requires either an exposure period (i.e., ≥1 week) or a minimal volume of AK water consumption before the effects can be detected significantly in the blood and urine.